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ABSTRACT

Vib_at!ons of complex dynamical systems are treated in

te_-_s of ¢_nergy quantities, neglecting details of structure

and excitation. Relations between the avera4_e energies in

loosely and conservatively coupled systems are obtained in

terms of internal losses and coupling losses. It is Shown that

the products of modal density and coupling loss factor are the

same for each pair of subsystems.

The general theory is applied to study the noise reduction

of a rectangular box_ and experimental results are compared with

theoretical predictions with generally good agreement. The trans-

mission beha'#ior of a box at a given frequency is shown to depend

on the relation of this frequency to the lowest mechanical and

acoustical resonance frequencies and the critical frequency of

the walls. _eory and experiment show that near the lowest mechani-

cal resonances the pressure in the box may considerably exceed that
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in the incident sound fl_'Id.
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I. INTRODUCTION

The advent of powerful flight vehicles has increased the

need fo._ protection against wide band _andom noise and vibration.

It has become more Important to underst_d the response of struc-

tures to such excitation, not only from the point of the structures

themselves but a!_o from the point of the acoustic shielding that

enclosures can provide.

There is little hope of obtaining detailed solutions for

complicated dynamical systems, consisting of an a_lomeratlon,for

example, of beams, plates, shells, and fluld-filled spaces by

classical methods 1,2_ The very complication of such systems,

ho%_ever, makes these particularly amenable to statistical treat-

men% 925__/. Of course, in applying statistical methods we

sacrifice detailed Information for the sake of mathematical

tractability.

The statistical method discussed in this paper deals with

mean energies (averaged over time, space, and frequency) rather

than with detailed velocities and pressures. The distinction

between acoustical and mechanical systems largely dlsappears.

The method utilizes only gross parameters of the systems such as

total masses, average modal densitie%and loss factors. The

_esults so obtained pertain best to a typi_ system--that is,
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to an averse of a_ensembleof simila_ systems under diffuse

broadbmnd random excitation. Although some extensions, such

as the consideration of variances, are available _/, such

reflnements will not be considered here.

The basic statistical method Is outlined and extended to

multiple subsystems in Section If. Sections III and IV describe

a study of the noise reduction of a rectangular box_ Section III

presents expe_In_ental results, and Section IV compaPes these

with values predicted by means of the statistical and classical

methods. This noise reduction study Is presented not only to

lllustrate the utility of the statistical method, but also as

a subject of interest per se which, although familiar, has not
i

been fully tPeated previously _
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if. VIBRATIONAL AVERAGES /_ LOOSELY COUPLED SYSTEMS

(a) Imosely Coupled Systems

A complex classical d_ma_cal system may generally be

represented by _n equivalent circuit conslstin_ of resonators

and cer_aln cou_ollng elements. Each of the resonators corn-

sponds to one moOe (a spatial function describing a free vibra-

tion Of the system).

The spatial structure of a complex system is usually clear

if its subsystems are loosely coupled to each other. It is then

also usually clear how the coupllng might be reduced in order to

arrive at uncoupled subsystems under either "free" or "blocked"

conditlon_/, t,_reover, the modes of the system are then closely

related to the modes of the subsystems, taken as uncoupled.

'._hat we means more precisely, by a subsystem being loosely

coupled to others is that the vibrational energy per cycle ex-

changed by it with other subsystems Is small compared to the

energy stored in it, at Its resonances.

The present analysis will be limited to non-dlssipative

(or conservative) coupling. Many practlcal systems seem to

be coupled in such a manner. For example, no appreciable power

seems to be dissipated In the co_olinE between structures that

-3-



are Joined in permanent contact, or in the coupling between a

structure and a fluid in which the structure Is immersed.

(b) _dal Ener_ Balance

Let the velocity v of a complex system be given by

.1,,

where the _ a_e functions of position only (_belr_ a position

vector) and where tho T i are fvnct!ons only of time t. If the

velocity is statistlcally stationary, one may obtain the mean

vibrational energy E by averaging pl_l 2 over time and over the

volume V occupied by the system. If the functions _ ave ortho-

gonal or if the functions T i are uncorrelated, the mean energy

of the whole system is given bS_ /

__ . (2)
1

The followlnE analysls is simplified considerably by con-

slderlng only mean energies and related mean square quantities.

If we are tveatlng a complex system consisting of loosely

coupled subsystems, we may choose for the _i functions the

modes of the individual subsystems (considered as uncoupled).

These modes are orthogonal, and Eq. (2) will then constitute

a good approximation.
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The component ter_s of the sum of Eq. (2) represent the

time average modal energies

(3)

(.The letter 9 is used because these energies a_e analogous

tO temperature in thex_nod_namlc _s_/. ) Assume that the 1 'th

mode is on the average supplied wlth power I"£I from a source,

that it dissipates power 91¢1 Inte_ulally, that it transmits

power 81,J to mode J, and that it accepts power @j¢_ from

mode J, _here the _'s are posltlve factors _j. If there is

no power lost or gained othem_tse (e,g., In coupling) the

,nodal energy balance may be expressed as

J J

(4)

where the prime on the stt_uatlon symbol denotes that the te_m

where J equals i Is to be omitted.

For the special case where ail generator powers and all

to

el,_ = e2,1 . (5)

Accordlng to statistical mechanics, the average modal energies

of two coupled systems are equal in absence of sources and
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internal losses; hence, _ = _1.

result and write

We ma_generallze this

That Is_ the matrix of coupling factors is symmetric.

(c) Nodal averages

(6)

Let us determine multimodal averages of the various power

terms. Such averages have to be taken over a frequency band

_fwhleh contains at least several modes (whlchmeans gener-

ally that their resonances fall into the band). Average

spectral densities are obtained from modal averages bY

mu!tlplylng them wlthmodal densities.

The mean spectra/ density Ps of power fed (in the fre-

quency band considered) directly into subsystem s is given

_, _l/_ - ns<nl>i(s,_) (7)
i(s,_)

The summation index i(s,_f) includes only those mcdes which

belong to subsystem s and which are contained in the band Af.

The symbol n s denotes the modal density of the subsystem.
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The mean spectral density of energy stored in subsystems s

is similarly given by

ss .. /_, oi/ar = %<ol>i(e,_), (8)
i(e,_)

the mean spectral density of pc_ver fed into subsystem r by

subsystem sr_rby

? Y
P_ " l(s,_) _(r, ar)

.._ _n_.<_<*_>j(_..__C,._} (9)

and the mean spectral density of power dissipated Internally
i

In subsystems s by

Pss = i f) el¢_/af = ns<ei_'i>i(s''r) "
(lo)

(d) Coup11r_ Loss Factors

Coupling and in_rnal losses may also be expressed in terms

r an d s given by
of the loss factors q's qs'

p_/_ss (n)

end

_s
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where m denotes the (radlan) center frequency of the band Af

considered.

So far the only limitation imposed on the excitation IIi

!s that It be stationary. Although the modal enerEies 8 i gen-

erally may be expected to depend on the spectral distribution

of the excitation, the coefficients _ may be expected to be

relatively independent of it if tl_e physical loss and coupling

_mchanlsms are much less dependent on frequency than the modal

responses. Usually the details of the excitation are unknown

or their Ineluslon in calculations is impractical, so that it

is of interest to conslderan "average" excitatlonwhloh pro-

duces equlpartltlon of energy between the modes of each sub-

system in each narrow frequency band. Such equlpax_Itlon

seems r_asonable if the dlrectly supplied and internally dis-

sipated energy terms are small compared to the energy storage

telT_B.

If such equlpartltlon holds or if the 8i and <_>J(r,Af)

are unco_related in a subsystem s, we may rewrite the average

of the products in Fxl. (9) as a product of averages,
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By combinir_ this r_sult with Eq. (8) we find

1(s, f) (141

By interchanging the indexes s and r and making use of the

synunet_r of the _ij we ft_ther obtain

Since the average values indicated in Eqs. (14) and (15) are

identical we conclude that

r s (16)ns_ s = nr_ r •

Equation (!6)Indicates that for each pair of subsystems

the two products of modal density and coupling loss factor are

equal. This is the central result of this discussion and, with Eqs. (II)

aria (12), provides a conveni_.nt relation between average vlbrat_onal

energies and powers in multimodal systems. If only one mode

of, say, subsystem s is involved in Af, we only replace ns

by 1/Af. Yf the frequency band of in_erest is so narrow

that it contains at the most only one mode of each subsystem,

then there is no point in taking modal averages.
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r

We may define a <_oupling or transfer resistance R s

between subsystem s and subsystem r by

r r
= • (17)

where Ms is the total mass of subsystem s. R; is a transfer

resistance, not a drlvlng point resistance, althou_ for the

special case of a structure s radiating into a large space r,

this coupling resistance may be approximated by the radiation

_esistance of the structure for radiation into free space

(which is a driving point resistance) _/. In order to

avoid possible confusion, we shall here avoid use of re-

sistances in favor of the appropriate loss factors.

(.e) Spectral Energy Balance

It is useful to write the energy balance for the sub-

systems in terms of mean spectral densities, as

r 0 s

SB°_ s - (oESp_r _ P 8 •

P r

(18)

This system of linear equations is easily solved for the un-

known S. If only PI_O, for example, we find

Sr Alr

sI
(19)

where the A denote co-factors of the matrix elements indicated

by the subscripts.
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Fo_ the special ease where there are only the three sub-

systems, r,w,s, _ere direst excitation acts only on sub-

system r, and _nere there is no direct coupling between the

first and the third, Eq. (19) yields

W
sw _r

• (_)

and

Tls+q s

W
_r

• r w s s/(_:+_s)s
(2z)

These equations express the sharing of vibrational energy

between the subsystems of a system that is connected and

excited in the described manner.
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IIl. EXPERIMENTAL STUDY OF NOISE REDUCTION OF RECTANGULAR BOXES

Figure I is a schematic dlagramof the experimental setup.

The box to be tested was suspended in a large room from a string

attached to one box corner. The loudspeaker provided to excite

the room volume was placed sufficiently far from the box and the

room was sufficiently irregular and reverberant to generate a

diffuse sound field.

Two test boxes were used successively; the smaller had outside

dimensions 283 x 181 x 130 mm, the larger 458 x 407 x 306 mm.

Both were made from 1.6 mm thick 2024 aluminum panels bolted at

their edges to 6.4 mm square a!umlnumbar stock, with a bolt spac-

ing of about 50 mm. Each box was provided with a circular hole

near one of its corners to permit the insertion of a small micro-

phone into the box. All edges and holes were sealed by application

of hot wax.

_e sound pressure incident on the box was measured by means

of a I/2-inch diameter condenser microphone (Br_el and KJaer 4133)

placed about I m above the box. The same microphone, when in-

serted into the box, was used to measure the sound pressure inside

the box. A light accelerometer (Gulton ASI7T, weight 3.7 grams)

was glued (successively at several locations) to the box panels.

A root-mean-square meter with a long integration time (Ballantlne

320) was used to measure average values of the various siggnals.
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The d_mpin_ of vibrations of the box was determined by

exoltir45 _ the box with an eiectrodynamlc shaker (Goodman Industries

V-_7), removing the excitation, and measuring the reverberation

time (with a reoenbly developed reverberation time instrument).

n

Third-octave band filters (General Radio 155_-A, Bruel and

KJaer 2ii0) were used in tI_e various circuits as indicated in the

fi@ure.

Values of the loss factor _b associated with all energy

losses of the box will be needed later when the response to

sound excitation is calculated. These values were obtained from

measurements of reverberation (vibration decay) times T at various

frequencies f by use of the relation _ = 2.2/fT. Results of

these measurements for the smaller and the larger box, respectively,

ar_ shown in Figs. 2 and 3. Values of about 3 x 10 -3 were found;

this is much greater than the loss factor of aluminum, which is

about lO -4. Evidently, energy must also have been dissipated by

radiation, by the Joints, or by the enclosed air.

The response of box walls to a sound field in the room was

determined. Corresponding ratios of mean square transverse veloci-

ties of the walls of the lamEer box to the mean partlcle velocity

in the incident sound field are shown in Fig. 4. The reported
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wall vib_oations were measured where the vibrations were biggest

(usually near the panel centers). The local reduction of wall

vibration due to loadlngby the accelerometer at higher frequencies

has been taken into accom_t in the calculations leading to this

figure by means of appropriate calculated corz_ctions.

There is some question concerning the relation between spatial

mean square pm_el vibrations and the vibrations measured near panel

centers. The sound field excites most strongly those modes which

are syn_etrlcal about the par.el center lines. These modes have

m_xima at the panel centers, so that one might expect the measured

vibration levels to be excessive by about 6 db (or more for low

modes of clamped panels). However, experimental measurements

showed the vibration levels to be fairly independent of location

for frequencies a decade or more above the fundamental panel reso-

nanceso

The noise reduction of the two test boxes for outside noise

was determined. We define the noise reduction of a system (as

distinct from wall transmission loss) as the ratio of meansquare

sound pressure at a location before and after the system has been

introduced. The pressure in the room before the introduction of

the box may be well approximated by the incident pressure measured

sufficiently far away from the box. The pressure in the box was

obtained as a rough mean square taken over the enclosed space.

Figure 5 shows the noise reduction measured for the smaller box.

Figure 6 shows that for the larger box.



IV. C05_?ARiSONWITH THEORY

It is convenient to car_ _ out this comparison in distinct

frequer-cy ranges according to the number of modes expected in a

considered frequency band. _nere will always be many active

modes of the room in which the box is suspended. However,

the presence of mechanical box modes or of modes of the enclosed

space will depend on the position of the experimental bands

with respect to the lowest mechanical resonance (associated with

the lowest of the ftmdamental resonances of the box panels) and

the lowest acoustic resonance (wher_ the acoustic wavelength is

twice the length of the lonzest box edge).

Whenever several modes of a subsystem are exPected to be

active in a considered frequency band, we shall assume that

their modal energies are equal, in the average. For the box

walls, this assttmption is supported by experimental evidence

of mechmnical coupl_ng between the walls. Ho_ver, the following

analysis will be facilitated at various stages if we take the

box to consist of panels that are attached to a rigid frame and

hence mechanically isolated. This procedure is in line with

the statistical method which allows two systems to be interchanged

if only their statistical properties can be shown or assumed to

be in reasonable agreement. It will further be assumed throughout

the following discussion that no energy is stored in the box frame.



In the two boxes under study the lowest mechanical

resonances occu_red below the lowest acoustical resonances.

The fundamental panel resonances were found between the eor-

responding f_equencies one would calculate for hinged and for

clamped boundaries !0_o _e lowest mechanical resonance of the

sma!ier box was observed to occur at 250 cps (compared to

theoretical values of 167 and 322 cps for the two boundary

condlt!ons)_ the lowest mechanical resonance of the larger box

was found at 62 cps (compared to computed values of 45 and 80

cps). The lowest acoustical resonances of the smaller and

larger boxes occurred, respectively, at 600 and 370 cps.

A. Low Fr_uencles

At frequencies below all mechanical resonsnces the box

panels and the enclosed air act as pure stlffnesses. The

sound pressure Ps in the enclosed space follows the net volume

change due to the wall motion according to the law of adiabatic

compression. We find

PS = (ic2P/c°V) _" Awj<Vwj> (22)

where c is the velocity of sound in air, p the density of air,

the angular frequency, V the enclosed volume; Awj is the area

and <Vwj> the spatial mean outward velocity of the J'th wall.

The summation is taken over all six walls of the box_
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The acoustic pressure on the box surface is nearly equal

to the incident pressure Pr in the outside room. For a rigid

box the deviation of surface pressure from Pr is expected to

be less than I db, even for f_equencles as high as the first

acoustic resonance l_/ Box defozmmtlons cause the surface
@

pressure to exceed Pr by an amount of the order of

(a/_) 2 << 1 , where a is the greatest panel edge length and

is the wavelength o£ sound in air. When we neglect both de-

viations, the noise reduction of the box becomes simply

- l. (v/pc2)zc , (23)

where the Cj are the compliances (ratios. of displaced volume

to pressure) of the walls 6_/.

By computing the compliances Cj of the experimental panels

as i£ they were clamped plates we obtain NR = 22 db for the

smaller box and MR = 7 db for the larger one. These values are

indicated in Figs. 5 and 6 and may be seen to agree rather well

with the experimental values. (Corresponding calculations assum-

ing the panels to besimply supported lead to values that fall

considerably below the observed ones.)
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B. Intermediate Frequencies

This intermediate frequency region extends from the lowest

mechanical resonance to somewhat below the lowest acoustic

resonance. The air wlthin the box still acts llke a pure stiffness

clozely coupled to the walls and the pressure there obeys Eq. (22),

but the walls exhibit resonant behavior. _ne enclosed volume need

still not be treated as a separate subsystem; it loads the walls

reactively and increases some of their resonance frequencies

slightly_ but this increase may be neglected because it barely

changes the modal density of wall resonances nw.J. Nevertheless

the various wall .modes mugt be consldered separately (not Just in

modal averages), because they are widely spaced, at least near

the lower end of the intermediate frequency region, and because

at their resonances they can p_duce considerable increases in

the sound pressure within the box.

(a) Relation between Mean and Mean-square Wall Velocities

For frequencies below the acoustic resonance we may obtain

a good approximation to the spatial mean velocity <Vwj> of a box

wall by equating the power radiated from it to the power radiated

from a piston of equal area and mean velocity6-/:

2 r
<,,wj>%:,j <VwJ . (24)
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r
Here _j denotes the mass of a wall and _j denotes the loss

factor associated wlth the flow of energy from a wall to the

outside room. In accordance with Eq° (Ii),

i- r
%_j = PwJ_Swj • (zs)

where Pr
wj is the spectral density of power flow treE from the wall

to the room surrounding the box (without considering the power

pwJ fio,._Ing in the opposite direction) and Swj is the ener_

spectral density of the wall. The spectral densities of the

velocities in Eq. (24) must be related in the same manner as

the velocities, namely,

Sv _r ..... <v> 2 2wj_,wj_,_j= Swj A_j_/4_c . (5)

(b) Noise Reduction at Single Wall Resonances

Minimum noise reduction may be expected to occur when two

opposite box panels vibrate at or near their common resonance

frequency and move sy_metrically in phase with each other. If

the resonances of the other panels lie outside the frequency

band considered, these other panels cen be considered as rigid.

!

By .making use of the aforementioned symmetry, i.e., by

conside_inE a volume V/2 with a single non-rigid wall, designated

by the subscript_ and by applying Eq. (22) and Eq. (26) we find

-19 °



__r M S vsP = %J wj wJB
r.£)_V

(z7)

Since no net energy is transferred to the enclosed space, the

power received by the wall is either dissipated mechanically

or reradiated to the room outside the box. Thus,

wJ r
srn J=  J(Nj + • (z8)

v and S_j may be obtained_n_.e velocity spect_.al densities S r

by dividing the respective energy spectral densities by the

masses. Combining Eqs. (16), (27) and (28), and the relation

2_2_v=pu_ r

between pressure and velocity spectral densities in the room,

we obtain

. (30)

For a large test room the power lost by the wall to the

room maybe approximated well by the power that would be radiated

into a half space. The corresponding coupling loss factor _j ,

calculated as if the box walls were baffled hinged plates,is found

to be_
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(31)

for a mode _'ell below the critical frequency (the lowest colncidence

frequency) fcJ /_ 2= c_/_hjCwj of the wall. The product of plate

wave numbers in the x- and y-direction ICxky may be approximated by

TL,_J 16phjc_j= _ ..... , (32)

3_ fcAwjPwj

wher_ Cwj and PwJ are respectively the plate speed of sound and the

density of the wall materlal, and hj the wall thickness.

I_ inserting the Patio of modal density to mass

nr_4 r = 4_f2/pc 3 (33)

as well as Eq. (32) and nwj - i/Af into Eq. (30), we obtain

the noise reduction

By introducing into Eq. (34) the area of the smallest wall

one obtains a lower bound to the noise reduction which applies

also at resonances of the larger panels occurring below the

fundamental of the smallest ones. By inserting the appropriate
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numerics! values into Eqo (34) and approximating the total wall

.wj r
loss factor e_j + _j by the measured _ values (Figs. 2 and 3)

one obtains the lines labeled "lower bound" in Figs. 5 and 6.

It may be seen that the experimental data indeed do ex@eed

these lo%ce# limits, with one exception.

(c) Noise Reduction in Multimodal Bands

In reasonably wide frequency bands not too close to the

fundamental wall resonances we may expect to encounter several

active wall modes. Assuming that the wall motions are in-

coherent we find fz_m Eq. (22) and Eq. (26) that the pressure

spectral density in the enclosed space is given by

(35)

The wall spectral energy balance may be expressed as

(36)

where Sw ,, Z Swj, % = Z %j, and

nwj o _ Al_j/Cwjhj
(37)

is the modal density of the J'th wall (approximated by its

asymptotic formula). Average equlpartition of wall modal energy

is expressed by
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% j = %j s_/n w . (3S)

After introducing Eqs. (36) and (38) into (35) we obtain

(39)

The coupling loss factors appearing in Eq. (39) may be

approximated by use of an available expression for the average

power radiated into half-space by a baffled hinged panel vibrat-

ing in modal equilibrlum_. For frequencies well below the

critical frequency we find

i/2
, (4o)

where _.j is the perimeter of the J'th panel. When we introduce

this result and Eqs. (33) and (37) into Eq. (39) we obtain the

following expression for the noise reduction of the box:

(_l)
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We may approximate the first bracketed term by _b'

the measured total 1cos factor of the box. (The approximation

is exact if the panels also share modal energy equally throughout

the decay experiment in which _b is measured.) If we now

specialize to the case where all walls are of the same material

and of equal thickness, we obtain

 pf3pfl2
(4z)

For boxes that are roughly of cubic shape, the term

,_ ....EA_J/(_'_J)2_I" For the experimental boxes considered here

we find from Eq. (_2) values corresponding to the dashed lines

appearing in Figs. 5 and 6 directly above those labeled "lower

bound." As evident from the figures, the lines based on Eq. (42)

predict the averse of the observed noise reductions reasonably

well.

At frequencies well above the fundamental mechanical and

acoustic resonances we may rely on the presence of several

mechanical as well as several acoustic modes in any of the

considered frequency bands. The ener_ybalance for the panels

then may be expressed as



wJ+_ r sSr_nwJ+ ss__J _ _ Swj(Nj Nj + Nj) (43)

and that for the enclosed space as

(44)

The summations here are a_ain t_ken over all the box walls.

Similarly, the energy balance pertaining to the decay experiment

is given by

wJ r s _wJsw% = zsw_(_j + _j + _j) - ss x (45)

If we assume that Eq. (44) and equipartition of wall modal energy,

Eq. (38), hold also for the decay experiment, we find from Eqs. (16)

and (45) that

-i s 2

% _ _(_ + %5 + %3_)%/nw- s _,
nsns+ _jnwj

(46)

By use of this relation and Eqs. (16), (43), and (44), we may

conclude that the energy levels of the box walls and of the enclosed

space are given by

SP r

sw = nr% _ _nwj
(_7)
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and

nrnwr_b (n s _+2_jnwj )

, {4B)

in correspondence to Eqs. (20) and (21), respectively.

By applying Eq. (33) to Eq. (47) we find that the velocity

levels obey

S_ Mr

° . (49)
Sr

Then we find from Eqs. (29) and (48) that the noise reduction is

given by

where

nsM r (51)

and L denotes the sum of all box edge lengths, The ratio P

represents a correction factor which expresses the deviation of

the modal density of the enclosed space from the corresponding

asymptotic formula, This ratio is plotted in Figs. 2 and 3 for

the two test boxes.
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The wall coupling losses appea._Ing In Eqs. (49) and (50)

may be approximated again in terms of the power radiated into

free space by a baffled hinged plate vibrating in modal equilibrium _.

For a p!_te wider than the acoustic wavelength and radiating into a

half spa¢.e below its critical frequency fcJ we find

where the function g2 is that of Maids,hi--However, in this

frequency regime the plates radiate mostly from their edges 12-12_/so

that the box walls radiate essentially outward into a 3/4-space

and inwaz_d to a 1/t-space 6_. Modifying Eq. (52) accordingly, we

obtain by use of Eq. (37) that

,, 2  wjg2(fl 'oj)Ipwb fcj°wj

_.,S
and three times thls value for _jnwj/n w.

Computed values of the coupling losses for the two boxes under

study are sho_m in Figs. 2 and 3. They lie generally well below the

measured values of the total loss factor _b _ except when the fre-

quency approaches the critical frequency.

-Z7-



The internal losses of the enclosed space are dominated

by viscous and thermal losses at the boundary, so that the

corresponding loss factor obeys

_sS = SmCA_4a) V

where sm is a dimensionless quantity which, for air at room

temperature, is given b i_ / sm = 18 x 10 -5 fl/2 where f denotes

frequency in cps. (Other losses, such as that due to internal

s
absorption in the air are negligible.) The loss factors _s

associated with the two experimental boxes are indicated in

Figs. 2 and 3.

Computations based on Eq. (49) result in vibration level

values that, for the larger boxj are in close agreement with

measured values (see Fig. 4) at frequencies from one octave above

the lowest acoustic resonance up to the critical frequency.

Similarly, the noise reduction calculated from Eq. (50), as shown

in Figs. 5 and 6, may be seen to be in good agreement with ex-

perimentally determined values up to about one octave below the

critical frequency.

D. Classical Transmission Theor_

For the sake of additional comparison, calculations based on

classical wall transmission theory are presented, too. The
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transmission coefficient r of a wall is classlcally=_deflned

as the ratio of tr_smltted to incident sound power, where the '

wall is taken as of infinite extent. If the _ean sound intensity

incident on the test box is denoted by

I r = <p_/4pc (55)

and the mean intensity in the enclosed space is denoted by Is ,

then the power balance for the enclosed space may be written as

Ir ZAWj7 J = Is ZAwj7 j ÷ 4Is_ _ V/C (56)

where the last term denotes the power absorbed in the enclosed

space. The noise reduction of a box, specialized for walls of

equal tr_smission coefficient, may then be found to be given by

Ir _SV
(57)

We would expect this expression to be valid at high frequencies,

where the box panels extend over msny flexural wavelengths and

the interior space encompasses many acoustic wavelengths. Figures 5

and 6 show NR values for the test boxes calculated from Eq. (57)

and using a value of • accordir_ to the "field incidence" lawTl-_

-Zg-



Vo DIS_JSSION AND CONCLUSION

The results obtained D_om vibration and sound measuro-

_nts on reo_anE_lar alum_nmn boxes were found to ague

r_asonably well with theo_etlcal predictions based on

various models applicable _n ditferent l_.._equenoy reE1ons.

It is also apparent from the analysis that the noise _-

ductlon of a box, as defined her_, is the same for an ex-

tem'_.al as for an internal noise 8o_e, provided that both

are dtfflme constant volume noise sources.

At very low f_equenoles, the noise _ductlon of a reo-

tansular box Is constant but much less than that _hlch would

be obtained with a spherical shell of the same mate_lal,

we!ght, and enclosed volume. The noise reduction of a

spherical 8hell of rad:tu6 R may be shown to be _ven by

HR = [1 ÷ ghowPw/3e2pR]2,'J-- For spherical enclosures of the

sa_ materlal_ weights, and volumes as the rectansular test

boxes we aa1_ulate noise reductlons of 77 and 69 db (oo._ared

tO 22 a_l 7 db, respectively, for the reotsnsular boxes). Of

course, the low noise r_duotton of a flat plate below lts

first mechanioal resonance has long been known to aooustto

praotltioners.

-_0-



At so_What hIsher £requencles, the lowest ,_chanlcal

reson_ces a_e reached. Thee9 are associa_ed with _t,r_;ul_

_h_vtor o_ _he notse r_ductton cur_e_ wh1¢I_ may even take

on neEa_ive values. The behavior In this _quency re_ion

may be analyzed by taking the stl_ctuPal resonances into

aooount_ but asstm_%ng the enolosed volume to act as a stiff-

heSS. The fTequency Pangs in which this behavloP ooour_ de-

perks on tho panel prope_le8 8xld box dimensions; fop the

smeller box studied it encompassed I-1/2 ootaves, for the

largeP 2-1/2 octaves. Nesatlve noise reduotion values as low

as -18 db in some third octave band were observed.

At hlgheP _r_o.uenoles, modal details disappear end the

nolse _ductlon flees at a rate of about 3 db/octave in Eood

_1_e'_ent with theory. _oise reduction maxima (of about 17 db)

were observed at about half an octave below the erltleal fre-

quency o£ the panels.

About the critical frequency, the noise r_duotlon of the

two tes_ boxes decreases to about 11 db, but the p_dioted

values tall short of the measured ones. This is obviously

due to an overestimate of t.he panel r_dtated power by the

theoretical express$on used to oalculate the panel oouplinE

loss factors In this _requenoy region. Still lower values

a_w predSeted about the orltloal f_equenoy by the olassioal
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wail trausmlsslon theory; but at Zower /requencles this theory,

which takes into account only forced waves, predicts somewhat

too _i_h values of noise reduction.

An extension of the armlysls presented here to enclosures

with non_u_Iform walls or with reinforcing ribs could be readily

accom_llshed. Inclusion of these factors would complicate the

computation of the various loss factors and modal densities

only sliEhtly.

A method for the analysis of an average system due to

average excitation in te_s of massess modal densities, and

loss factors, has been presented and illustrated. After in-

ternal and external loss factors have been oalculated or es-

timated by means of convenient substitute systems, only

elementa_ operations remain to be performed, The method

treats sound and structural vibration equally and should

be successful with complex systems which could not be

analyzed otherwise without difficulty.
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